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It is shown that local temporal correlations in addition to nonlocal spatial correlations are important to
understand the size and the doping dependence of the d-wave superconducting order parameter of high-
temperature superconductors. To this end, the hole- and electron-doped two-dimensional Hubbard model at
zero temperature is considered and treated by an extension of the variational cluster approximation. Within this
approach, the effects of temporal correlations can be studied systematically and in a thermodynamically
consistent way by comparing results obtained from different reference clusters. Contact can be made with
previous cellular (plaquette) dynamical mean-field calculations. This shows that temporal correlations consid-
erably decrease the order parameter and provide a substantial gain of binding energy. Besides, a few methodi-
cal insights regarding real-space quantum-cluster approaches are obtained in addition.
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I. INTRODUCTION

There are strong efforts devoted to a convincing theory of
high-temperature superconductivity with nonlocal d-wave
order parameter. Some agreement has been achieved that es-
sential physical properties can be studied within the proto-
typical two-dimensional single-band Hubbard model.! Using
standard notations, the (grand-canonical) Hamiltonian reads

H= E (tl]_ Mél:f)c;!—o'cjo'-i- UZ nl‘T}’lil (1)

ijo

with ¢! (c;,) being the creation (annihilation) operator of an
electron at lattice site r; with spin projection o=T,|. n;,
=c2'ac,-0 denotes the corresponding occupation number opera-
tor. The energy scale is set by the nearest-neighbor hopping
t,n=—1. To describe the universal low-energy physics of cu-
prates, an additional second-nearest-neighbor hopping term
with t,,,=0.3 (Ref. 2) as well as U=8 are taken as standard
parameters which will be kept fixed throughout the paper.

The physics of the intermediate-to-strong-coupling re-
gime of the model is notoriously complicated since there are
several phases with different long- or short-range correla-
tions competing on a low-energy scale. Due to the nonlocal-
ity of the (d-wave) order parameter in the superconducting
phase, a pure (single-site) mean-field approach cannot cap-
ture the essential features of the model. On the other hand, a
direct numerical solution of finite but large two-dimensional
Hubbard lattices is, in principle, possible via a quantum
Monte Carlo approach.>* However, for the interesting pa-
rameter regime, i.e., doped systems at low temperatures, the
so-called sign problem makes simulations ineffective.

In this situation, quantum-cluster approaches>® appear
promising, i.e., cluster extensions’ of the dynamical mean-
field theory (DMFT) (Refs. 10 and 11) or the variational
cluster approximation (VCA).!>!3 Common to all quantum-
cluster approaches is that, for the calculation of the electronic
self-energy, a small cluster is self-consistently or variation-
ally embedded in a noninteracting bath that approximately
accounts for the effects of the cluster environment.
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Two types of correlations must be distinguished here: (i)
spatial correlations are neglected completely in single-site
DMEFT but are included within a cluster approach, up to the
size of the cluster. Here the number L, of correlated sites
with finite Hubbard U in the cluster is essential. For the
doped two-dimensional Hubbard model, the important feed-
back of nonlocal magnetic correlations on the single-particle
spectrum, for example, can only be captured by a cluster
approach. As spatial correlations are neglected beyond the
size of the reference cluster, a quantum-cluster approach can
also be seen as a cluster mean-field theory. (ii) Temporal
correlations are fully accounted for already in single-site
DMFT and give rise to a highly nontrivial frequency depen-
dence of the self-energy which, for example, is vital to un-
derstand the Mott transition. Here the number of uncorre-
lated sites with U=0 representing the bath is essential. As in
the DMFT a continuum of bath degrees of freedom is used, it
can be considered as an optimal mean-field theory.'%!? If a
continuum of bath sites is used, as it is intended us.ually,7‘9
an optimal quantum-cluster approach is generated for a given
L.

Besides quantum Monte Carlo techniques, the Lanczos
method'* is frequently used as a cluster solver since this
allows to study the ground-state phase diagram zero at tem-
perature 7=0. As the Lanczos method is limited by the total
number of sites, the VCA, if combined with Lanczos as a
solver, usually takes into account as many correlated sites as
possible but completely disregards bath degrees of
freedom.'>!3 The idea is that for a large cluster, temporal
correlations are sufficiently accounted for since they are re-
stored anyway in the infinite-cluster limit L.— % where the
VCA (as any quantum-cluster approach) becomes exact.

Using the VCA (no bath sites included), the ground-state
phase diagram of the two-dimensional Hubbard model has
been explored using clusters with up to L.=12 sites and dif-
ferent cluster geometries.!>'* Close to half filling, for hole
as well as for electron doping, these calculations reveal a
phase where antiferromagnetic (AF) order and d-wave super-
conductivity are microscopically coexisting (AF+SC). With
increasing doping, a pure superconducting (SC) phase per-
sists in both cases. In agreement with experimental data, the
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phase diagram is asymmetric. Antiferromagnetic order, for
example, extends to higher doping in the electron-doped
case. For the hole-doped system, an extended macroscopic
phase separation of the mixed AF+SC phase with a purely
SC phase can be found.'® This has been interpreted as a
tendency toward the formation of microscopically inhomo-
geneous (e.g., stripe) phases. On the other hand, there is
hardly a phase-separated state for the case of electron doping
which may be seen to be consistent with the absence of rig-
orous signs for stripe structures in electron-doped
materials.'®!8

Using the cellular DMFT (C-DMFT) (including bath
sites) for the set of hopping parameters considered here,?”
but also for the particle-hole symmetric case (z,,,=0),2! one
can nicely reproduce the domelike shape of the supercon-
ducting order parameter found in experiments. For t,,,=0.3,
a homogeneous coexistence of antiferromagnetism and su-
perconductivity (AF+SC) is found for fillings close to half
filling while the pure SC phase persists for larger hole and
electron concentrations. For the hole-doped system, the pure
superconducting phase extends over a broader range of dop-
ings than on the electron-doped side.

We conclude that VCA (no bath sites) and C-DMFT (in-
cluding bath sites) yield very similar ground-state phase dia-
grams. However, there is an obvious discrepancy with re-
spect to the size of the superconducting order parameter.
VCA and C-DMFT results can differ by more than a factor 2
(see also results below). In addition, the optimal (hole and
electron) doping is larger in the VCA as compared to the
C-DMFT calculations. A major purpose of the present paper
is to point out that this is due to an underestimation of local
temporal correlations within conventional VCA. Physically,
this means that temporal correlations, giving rise, e.g., to
Kondo screening of magnetic moments, are important to un-
derstand the order parameter, the phase diagram, and even-
tually the pairing mechanism.

For practical calculations using the Lanczos method, it is
quite tempting to consider a plaquette of four correlated sites
since this allows for d-wave order as well as nonlocal singlet
formation with a minimum computational effort. Employing
a plaquette represents the first important step beyond a
single-site (dynamical) mean-field approach. Here we
present calculations obtained by an extension of the conven-
tional VCA, i.e., we employ a reference cluster with one
additional bath site attached to each correlated site. This can
be done within the framework of the self-energy-functional
theory (SFT) by comparing different but thermodynamically
consistent approximations.

II. SELF-ENERGY-FUNCTIONAL THEORY

Both, the VCA and the C-DMFT, can be seen as approxi-
mations originating from a certain cluster reference system
within the context set by the SFT.'>?? In the (conventional)
VCA, we consider a finite cluster without bath sites embed-
ded in the original lattice while for C-DMFT, a continuous
bath is attached to each correlated site of a cluster (see Fig.
1). Both include nonlocal short-range spatial correlations on
a scale up to the linear size of the cluster. Beyond that both
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FIG. 1. (Color online) Reference systems and variational param-
eters as used for our calculations. Additionally a corresponding ref-
erence system generating the C-DMFT is illustrated. Here, a con-
tinuous bath is optimized while the parameters of the correlated
sites remain at their physical values.

approximations are mean-field-like. The treatment of local
(temporal) correlations, however, is different. The continu-
ous bath considered in the C-DMFT ensures that these are
taken into account exactly for arbitrary cluster size and even
in the case of single-site DMFT. On the other hand, within
the VCA, the description of local correlations becomes exact
in the infinite-cluster limit only.

Self-energy-functional theory!? starts from the grand po-
tential of a system of interacting electrons expressed as a
functional of the self-energy,

Q] =TrIn(G;' - 2)™' + F[X] (2)

with the free Green’s function G, and F[X] being the Leg-
endre transform of the Luttinger-Ward functional ®[G].?
This functional can be shown to be stationary at the exact
(physical) self-energy. Hence, we have the following dy-
namical variational principle:

s0[2]=0. (3)

This, however, cannot be evaluated in practice since the
functional form of F[X] (and of ®[G]) is actually unknown.
The main idea of the SFT is to restrict the variation of the
self-energy in the variational principle Eq. (3) to a certain
subspace of trial self-energies which is spanned by the self-
energies of an exactly solvable reference system (i.e., a small
cluster). This means to parameterize the trial self-energy %,
by the one-particle parameters of the cluster ¢’ and to treat ¢’
as variational parameters,
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14
J‘Q[Et’] =0. (4)

For a small cluster, the value of the grand potential at the
trial self-energy, ()[2,/], and thus the condition Eq. (4) can
be evaluated numerically exact, see Refs. 12 and 18, for
example.

For any practical calculation, one usually considers a few
physically relevant parameters only. Figure 1 illustrates the
different plaquette reference systems considered in this study
and, for the VCA, the one-particle parameters to be opti-
mized. The conventional VCA refers to a reference system
with the following Hamiltonian:

H' =2 thelcjo+ (&= 1) 2 nig+ U2 nyny)

ijo io i

+hsc2 Aij(ciLCjT +H.C.) (5)

i

including a global shift of the on-site energies ¢ and a ficti-
tious symmetry-breaking Weiss field of strength hgc as varia-
tional parameters. Optimization of & ensures thermodynamic
consistency with respect to the total particle number!” while
the Weiss field allows for a possible superconducting phase.
Note that the interaction term is the same as for the original
model Eq. (1). Contrary, only intracluster hopping param-
eters tl-’j are retained while the intercluster hopping is
switched off. For d,2_ pairing,

for ri—r;=*e,

1
Aij=
-1 for ri-r;= *e

(6)
y
with cluster sites r;, r; and e,, e, being the unity vectors in
the x and the y direction.
Attaching one additional bath site to each correlated site
results in the reference system Fig. 1, bottom. The Hamil-
tonian reads

H' = E li’jClT,er(r"' (e- ,U«)E Nig+ UZ nin;
ijo

io i

+ Vz (a:u—cirr + HC) + (Sh - M)E Ny io

+hb,SCE Al-j(ailaﬂ +H.C.). (7)
ij

Here, the hybridization strength V with the bath sites and
their on-site energy g, are treated as additional variational
parameters. This leads to an improved description of local
correlations as compared to the reference system Eq. (5). In
Eq. (7), aj(, (a;,) creates (annihilates) an electron with spin
projection o=, | on a bath site coupled via V to the cluster
site r;, and nb,i(,:ajaaw.

Within the SFT and using the reference system in Fig. 1
(right), it turns out that the Euler equation of the variational
principle Eq. (4) is equivalent with the C-DMFT self-
consistency equation for the parameters of the continuous
bath. The optimal values of the one-particle parameters as-
sociated with correlated sites can be shown to be given by
their physical values, i.e., those of the original system.!” For
a reference system with a finite number of bath sites, on the
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other hand, this is no longer necessarily true. Namely, the
truncation of the intercluster hopping is partially compen-
sated for by optimal parameters associated with the corre-
lated sites that differ from their physical values. In the con-
ventional VCA (i.e., no bath sites), this is obvious.

For a reference system including bath sites, Fig. 1 (bot-
tom), we therefore expect that applying the fictitious (i.e.,
unphysical) Weiss field to the bath sites is much more effi-
cient as compared to the correlated sites. We have numeri-
cally checked this for the case of antiferromagnetic order
where both, a staggered magnetic Weiss field on the corre-
lated and on the bath sites have been varied simultaneously:
The optimal staggered field on the correlated sites has turned
out to be typically more than an order of magnitude smaller
than the one on the bath sites and to be negligible for the
calculation of observables.

Consequently, in Eq. (7), we attach the symmetry-
breaking Weiss field &, gc to the bath sites. Note, however,
that we still do optimize the parameter & (in addition to g;) to
ensure the above-mentioned consistency with respect to the
particle number.

III. SPIN-DEPENDENT PARTICLE-HOLE
TRANSFORMATION

As has been demonstrated by Sénéchal et al.,'” a possible
way to treat superconductivity within VCA is to employ the
Nambu formalism where normal as well as anomalous
Green’s functions have to be computed to evaluate the self-
energy functional. An alternative is given by a spin-
dependent particle-hole transformation of the original and
the reference system. This restores particle-number conser-
vation and avoids anomalous Green’s functions. The trans-
formation is given by

Y AT
¢y —diy  aiy — by,

¢l —dy al—b;. (8)

Applying the particle-hole transformation to H', Eq. (7), we
get

H' =2 tj{d}ydj; = djd;) + (e = W) 2 (g = 7))
ij i
+UX iy = U ity + V2 (bfydjy = b]ydj)
+ (g, — M)E_ (72 1 = 113 5)) + hb,SCZ Aij(bj-TbjL + bj-lbﬂ)
4 7
+2(8+sh—2,u), 9

where i, =d},d;s 7,;;=b},b;; and 1/;=1}; and A;=A; have
been used.

Equation (9) is interpreted as a reference system corre-
sponding to the particle-hole-transformed original system
Eq. (1). For both cases, the transformation yields an attrac-
tive Hubbard interaction (U— —U). Hopping terms become
spin dependent, and chemical-potential-like terms are
mapped onto ferromagnetic fields and vice versa. The non-
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local pairing field maps onto a nonlocal spin-flip term. The
transformed Hamiltonian respects particle-number conserva-
tion (unless there were spin-flip terms in the original one
which would transform to pairing fields), the z component of
the total spin, however, is no longer conserved. For the trans-
formed reference system, the anomalous Green’s function
vanishes; the normal Green’s function is no longer diagonal
in the spin index o.

In practice, we first evaluate the self-energy functional for

the transformed original system H by solving the problem

posed by the transformed reference system H', ie., we cal-
culate the corresponding Green’s function and self-energy,
evaluate therewith the self-energy functional and optimize
the variational parameters. Note that the variational param-
eters are chosen accordingly (e.g., the on-site energy is rep-
resented as the strength of a ferromagnetic field in the trans-
formed system, see Eq. (9), and this field strength is varied
and optimized). We have crosschecked with the results ob-
tained without transformation where possible. Observables,
i.e., static expectation values, Green’s functions, and the SFT
grand potential, have to be transformed back, optimization of
the parameters is performed subsequently.

As an advantage of using the particle-hole transformation,
only minor changes in the standard VCA code are necessary.
The evaluation of the self-energy functional can still be done
using the Q-matrix technique introduced in Ref. 18, for ex-
ample.

IV. RESULTS AND DISCUSSION

For the discussion of the results of our VCA calculations,
we focus on the superconducting order parameter. Besides
integral quantities such as the ground-state energy, this is the
observable which is sensitive to the relevant low-energy
scale and which shows the largest discrepancy when compar-
ing (plain) VCA and C-DMFT.

To be consistent with the C-DMFT calculations of Kan-
charla er al.,® we take

Agc = [eijeip)] (10)

as the definition for the superconducting order parameter.
The indices i and j refer to nearest-neighbor sites. Since
translational symmetry is broken by the cluster approach,
(cic;p) is computed for lattice sites which, in the reference
system, would belong to the same cluster. VCA calculations
using the reference systems given in Fig. 1 have been per-
formed for a square lattice consisting of up to L=6400 sites
for nearest-neighbor hopping set to #,,=—1, second-nearest-
neighbor hopping ,,,=0.3 and U=8.

The results are summarized in Fig. 2 which shows the
order parameter Agc as a function of the electron density n
for zero temperature. Apart from the normal state, we have
allowed for a pure superconducting phase only and sup-
pressed a possible antiferromagnetic phase which shows up
close to half filling and has been studied in detail in previous
work.!0-1924 Tn the case of the conventional VCA (blue line,
reference system Fig. 1, left), a Mott insulating solution is
found at half filling. With increasing doping, Agc increases

PHYSICAL REVIEW B 81, 144516 (2010)

hole doped

electron doped

©
=

0.08

0.06

VCA + bath sites

order parameter Ay

0.04

0.02

C-DMFT
NI RN ) SO BT

1.1 1.2 1.3
electron density n

o\\\\\

FIG. 2. (Color online) Superconducting (d-wave) order param-
eter Agc [see Eq. (10)] as a function of the electron density n within
conventional VCA (blue line, variational parameters & and /gc) and
VCA including bath sites (red line, variational parameters g, g, V,
and £y, gc). In the case of VCA with bath sites, a second solution
with higher ground-state energy is found (dashed red line). Calcu-
lations have been performed for system sizes up to L=6400 sites.
C-DMFT results from Kancharla er al. (green symbols, Ref. 20, Fig.
2) are shown for comparison.

and reveals its maximum value at n= 0.7 for hole doping and
n=1.2 for electron doping. Unfortunately, we could not
trace the solution for dopings much larger than the optimal
dopings. Quite generally, a possible discontinuous change in
the ground state of the finite reference cluster may result in a
discontinuous change in the self-energy and thus of the SFT
grand potential. Thereby, a solution can cease to exist.

Using VCA with bath sites (red line, reference system Fig.
1, bottom), the order parameter is small but remains finite at
half filling. The maxima of Agc are found at n=0.92 and
n=1.08, i.e., at significantly lower dopings as compared to
the results of the conventional VCA. This comes close to the
C-DMFT results of Kancharla et al.?® The stationary point
could not be traced for hole doping larger than 1-n=0.2
and electron doping larger than n—1=~0.3. On the hole-
doped side, a second symmetry-broken solution could be
found which comes very close to the C-DMFT data and
shows up a second-order critical point with Agc— 0 and with
the symmetry-breaking Weiss field h, gc—0 at n=0.75.
This solution is found to exist up to n=<0.96.

In the entire hole-doping range where two superconduct-
ing solutions can be found, however, the one with the larger
order parameter is more stable, i.e., for 7=0 has a lower
ground-state energy at the same filling. This is what could be
expected from a (cluster) mean-field theory. The ground-state
energies of the respective solutions are shown in Fig. 3. Note
that the energy difference between the two solutions obtained
from VCA with bath sites is rather small compared to the
energy difference between the results from conventional
VCA and VCA with bath sites. It is also worth mentioning
that the conventional VCA ground-state energy is higher al-
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FIG. 3. (Color online) Ground-state energy as a function of the
electron density n within conventional VCA (blue line) and VCA
including bath sites (red line). Dashed red line: second solution with
higher ground-state energy.

though the corresponding solution has the larger order pa-
rameter. Both facts show that including bath sites consider-
ably improves the approximation; bath sites couple to the
plaquette of correlated sites and yield a significant binding-
energy gain. This gain is finite but small at half filling and
increases with increasing doping.

Conceptually, the inclusion of bath sites improves the
variational ansatz for the trial self-energy. Bath sites mimic
the residual lattice into which the cluster is embedded by
taking into account processes involving the sites of the clus-
ter environment on a mean-field level. Physically, this means
to improve the description of local (intracluster) quantum
fluctuations. These additional fluctuations are expected and
in fact seen to decrease the order parameter. An, in principle,
optimal treatment of local fluctuations is provided by (clus-
ter) DMFT where a continuum of bath sites is considered. By
comparing the VCA with and without bath sites with the
C-DMFT and the respective results for the order parameter
(see Fig. 2), we find that the essential step is already done by
attaching a single bath site to each of the correlated sites. The
convergence with the number of bath sites has already been
recognized to be extremely fast in different contexts, see
Refs. 25-27. The inclusion of more and more bath sites must
bridge the remaining discrepancies with the C-DMFT results
since conceptually the SFT recovers C-DMFT in this limit.
Note, however, that for the practical C-DMFT calculations
performed at 7=0 using the Lanczos technique, a plaquette
geometry with two additional bath sites per correlated site
has been used only.?°

For the conventional VCA without bath sites, the normal
state at half filling n=1 is described by a half-filled reference
cluster, i.e., n’=1. Upon doping and provided that the solu-
tion can be traced continuously, i.e., that there is no discon-
tinuous change in the cluster ground state, the cluster re-
mains at half filling, »'=1. This yields an obviously
unphysical description of strongly doped phases. As has al-
ready been demonstrated for the one-dimensional Hubbard

s s e B S
hole doped electron doped
016 P P
- L
< L
[0}
&) L
c
o 0121
Q L
S L
0.08
0.04—
0 PRI RS RRI R

0.8 0.9 1 1.1 1.2
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FIG. 4. (Color online) Difference [n—n'| of the electron density
in the original and the reference system (correlated sites only) as a
function of the electron density n. VCA calculations with and with-
out bath sites corresponding to the calculations shown in Fig. 2. n
—n' changes sign at n=1 for the conventional VCA calculation
(blue line) and is positive for electron doping.

model,?® bath sites can help to overcome this problem since
they serve as charge reservoirs while the reference cluster
remains half filled, the average occupation number n’ on the
correlated sites in the cluster is close to the electron density n
of the lattice model. For a superconducting state, the situa-
tion is somewhat different since there is no particle-number
conservation. Still there is a similar problem for plain VCA
calculations without bath sites as can be seen from Fig. 4. In
the hole-doped case at n=0.7, for example, we find n’
~(.88 (this corresponds to a sizeable difference |[n—n’|
~(.18, see figure). Adding a single bath site per correlated
site, yields a strongly improved although not perfect descrip-
tion with a smaller difference [n—n'| as shown in the figure.
Conceptually, n=n' can be achieved for a continuum of bath
sites only, i.e., for full C-DMFT.

As can be seen in Fig. 4, there is a small but finite differ-
ence [n—n'| even at half filling opposed to the results of the
conventional VCA. This might correspond to the finite but
small value of the order parameter at half filling (see Fig. 2)
which then would have to be considered as an artifact. On
the other hand, a superconducting state at half filling is not
unexpected for frustrated lattice models (i.e., for finite ¢,,,)
if, at the critical point for the superconducting instability, the
system is metallic. In fact, a d-wave superconducting state at
n=1 has been found, for example, even within plain VCA in
Ref. 19 and within variational Monte Carlo.?

The translational symmetries of the original lattice are
artificially broken by any (real-space) cluster approximation.
Since bath sites are expected to provide an improved embed-
ding of the cluster in the residual lattice, however, one may
expect that they help to restore the symmetries of the original
state in a quantum-cluster approach. It is clear that even with
a full C-DMFT calculation, this can be achieved only par-
tially unless one uses additional (ad hoc) symmetrization
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FIG. 5. (Color online) Relative difference &, according to Eq.
(11) as a function of n for VCA calculations with and without bath
sites. We find the bath sites to partially compensate for the artificial
breaking of translational symmetry.

schemes subsequently. Nevertheless, there is a considerable
improvement as shown by our results. In Eq. (10), we have
defined the order parameter Ag- on neighboring sites in the
original lattice belonging to the same reference cluster. Age
is independent of the nearest-neighbor pair for a 2 X2 clus-
ter. To compare with the order parameter Agc ., for neigh-
boring sites belonging to different clusters, we define the
asymmetry parameter,

_ ASC - ASC,inter (1 1)

A - .
Agc + Agcinger

Figure 5 shows &, as a function of the electron density 7. It
is remarkable that the asymmetry can be reduced, depending
on the doping, by more than one third. We expect that for an
even stronger reduction a larger cluster would be much more
efficient than adding more bath sites.

V. CONCLUSION

Several cluster-embedding approaches can be formulated
within the framework of the self-energy-functional theory
which differ with respect to bath degrees of freedom. Cellu-
lar DMFT maps the lattice problem onto a small cluster of
correlated sites to each of which a continuous set of bath
sites is attached. This ensures an optimal description of the
local fluctuations. To access the zero-temperature phase dia-
gram for Hubbard-type models of strongly correlated elec-
tron systems, there is basically the Lanczos technique only
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which may serve as a “solver” for the effective impurity
(cluster) problem. This implies that, in practice, a limited
number of bath sites can be taken into account. The plain
VCA employs a reference system without any bath sites at
all. This approximation represents a valuable counterpart to
the C-DMFT which, however, provides an exact treatment of
the local fluctuations in the limit of an infinitely large refer-
ence cluster only.

An extended VCA which employs a reference system
with a single bath site per correlated site suggests itself as a
compromise and has been used here to study the doped two-
dimensional Hubbard model at zero temperature. As com-
pared to conventional (plain) VCA, we found a substantial
gain in binding energy when attaching the bath sites. For a
pure d-wave superconducting state, the extended VCA yields
a considerably smaller order parameter which comes close to
the predictions of plaquette C-DMFT. The same holds for the
optimal values for hole and electron doping, defined as
maxima of the filling-dependent order parameter. From the
comparison with the C-DMFT data, we conclude that, as
concerns the improved description of local correlations, at-
taching a single bath site per correlated site does the main
part of the job. Clearly, larger clusters exceeding a plaquette
are desirable to improve the description of spatial correla-
tions.

Methodically, bath sites serve as charge reservoirs and in
this way yield an average occupation on the correlated sites
in the cluster which, opposed to plain VCA, is much closer
to the band filling in the original lattice model although the
total cluster filling still stays at half filling in the normal state
(this is different for the superconducting phase where the
particle number has no definite value). Bath sites also help to
partially restore the translational symmetry that is artificially
broken by the (real-space) quantum-cluster concept.

Physically, the comparison of the different variational
cluster approximations shows that local temporal correla-
tions in addition to nonlocal spatial correlations are impor-
tant to understand the size and the doping dependence of the
d-wave superconducting order parameter. The corrections
due to local correlations are most pronounced for the
optimal-doped and the overdoped regime. Here, local quan-
tum fluctuations are found to substantially decrease the order
parameter. This could be attributed to a Kondo-type screen-
ing of local magnetic moments which in turn reduces spin
fluctuations.
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